Search results for "Planar Graphs"
showing 2 items of 2 documents
Completely independent spanning trees in some regular graphs
2014
International audience; Let k >= 2 be an integer and T-1,..., T-k be spanning trees of a graph G. If for any pair of vertices {u, v} of V(G), the paths between u and v in every T-i, 1 <= i <= k, do not contain common edges and common vertices, except the vertices u and v, then T1,... Tk are completely independent spanning trees in G. For 2k-regular graphs which are 2k-connected, such as the Cartesian product of a complete graph of order 2k-1 and a cycle, and some Cartesian products of three cycles (for k = 3), the maximum number of completely independent spanning trees contained in these graphs is determined and it turns out that this maximum is not always k. (C) 2016 Elsevier B.V. All righ…
Decremental 2- and 3-connectivity on planar graphs
1996
We study the problem of maintaining the 2-edge-, 2-vertex-, and 3-edge-connected components of a dynamic planar graph subject to edge deletions. The 2-edge-connected components can be maintained in a total ofO(n logn) time under any sequence of at mostO(n) deletions. This givesO(logn) amortized time per deletion. The 2-vertex- and 3-edge-connected components can be maintained in a total ofO(n log2n) time. This givesO(log2n) amortized time per deletion. The space required by all our data structures isO(n). All our time bounds improve previous bounds.